原子层沉积制备Ru薄膜及其导电性能研究

Study on preparation and conductivity of Ru thin films deposited by atomic layer deposition

  • 摘要: 随着集成电路器件尺寸的不断缩小,当工艺技术节点低于5 nm时,传统金属互连材料Cu因其电阻尺寸效应已无法满足性能需求,亟需开发新型金属互连材料及其制备技术。本研究采用原子层沉积(atomic layer deposition, ALD)技术,以SiO2为衬底,系统研究Ru(EtCp)2/O2体系中循环次数、前驱体与氧气脉冲时间以及沉积温度等工艺参数对Ru薄膜生长及导电性能的影响,为高导电Ru互连薄膜的ALD工艺优化提供技术支持。实验结果表明:当ALD循环次数低于200次时,Ru颗粒呈离散岛状结构;当循环次数达到500次后,形成连续导电网络,薄膜中Ru单质纯度超过90%。在SiO2衬底上沉积的Ru薄膜厚度为19.7 nm,电阻率为25.6 μΩ·cm。当前驱体与氧气脉冲时间分别为5 s和10 s时,薄膜沉积速率达到0.051 nm·循环−1。通过调节沉积温度优化薄膜中的晶界扩散,在325 ℃下薄膜导电网络稳定,SiO2衬底方阻为18 Ω;而在350 ℃下,热应力导致晶粒粗化和导电网络碎裂,方阻增加至59 Ω。

     

    Abstract: With the ongoing miniaturization of device sizes in integrated circuit component, traditional copper (Cu) interconnects encounter performance limitations below the 5 nm technology node due to the size-induced increase in resistivity. This challenge highlights the need for novel interconnect materials and fabrication techniques. This study utilized atomic layer deposition (ALD) with a Ru(EtCp)2/O2 system on SiO2 substrates to examine the influence of optimizing critical process parameters on ruthenium (Ru) film growth and conductive network formation. These parameters include ALD cycles, precursor/oxygen pulse durations, and deposition temperature. The objective was to provide experimental insights for refining the ALD process to produce high-conductivity Ru interconnect films. Results indicated that Ru films deposited with fewer than 200 ALD cycles exhibited discrete island-like structures. A continuous conductive network formed when the cycle count reached 500. The metallic Ru film purity exceeded 90%. On SiO2 substrates, the deposited Ru film thickness was 19.7 nm, with a corresponding resistivity of 25.6 μΩ·cm. Optimizing the precursor and oxygen pulse durations to 5 s and 10 s, respectively, increased the deposition rate to 0.051 nm·cycle−1. Temperature regulation, which influenced grain boundary diffusion, revealed that at 325 ℃, the conductive network remained stable, yielding a sheet resistance of 18 Ω. In contrast, at 350 ℃, thermal stress induced grain coarsening and network fragmentation, increasing the sheet resistance to 59 Ω.

     

/

返回文章
返回