Citation: | ZHANG Zhan-feng, DENG Cao-zhuang, WANG Chen-xi, ZHU Min-min. Research on polarization switching dynamics in barium titanate ferroelectric tunnel junctions[J]. Journal of Functional Materials and Devices, 2025, 31(2): 121-129. DOI: 10.20027/j.gncq.2025.0015 |
To address the high energy consumption and low efficiency caused by the data transfer bottleneck between processors and memory in von Neumann architectures, this study explores a neuromorphic computing solution based on ferroelectric tunnel junctions (FTJs). FTJs exhibit the essential physical characteristics for neuromorphic computing due to their unique polarization switching behavior, where the statistical properties of polarization reversal directly determine device performance. Using barium titanate-based FTJ memory as a model system and through self-developed phase-field simulations combined with non-uniform field theory, this work investigates the regulatory effects of mechanical boundary conditions on polarization switching statistics. The results demonstrate that the non-uniform stress distribution induced by lattice mismatch between the top/bottom electrodes and the ferroelectric layer significantly modulates the polarization switching dynamics: FTJs exhibit faster polarization switching speeds and higher inhomogeneity compared to unclamped pristine ferroelectric thin films, leading to substantially enhanced neuromorphic computing performance. This study confirms the beneficial role of non-uniform stress engineering in improving FTJ-based neuromorphic computing applications. This finding is of great significance for optimizing the performance of neural morphological computing devices.
[1] |
Dastgeer G, Nisar S, Rasheed A, et al. Atomically engineered, high-speed non-volatile flash memory device exhibiting multibit data storage operations[J]. Nano Energy, 2024, 119: 109106. DOI: 10.1016/j.nanoen.2023.109106
|
[2] |
Wan C, Cai P, Wang M, et al. Artificial Sensory Memory[J]. Advanced Materials, 2020, 32(15): 1902434. DOI: 10.1002/adma.201902434
|
[3] |
Zhang W, Yao P, Gao B, et al. Edge learning using a fully integrated neuro-inspired memristor chip[J]. Science, 2023, 381(6663): 1205-1211. DOI: 10.1126/science.ade3483
|
[4] |
Sun H, Wang J, Wang Y, et al. Nonvolatile ferroelectric domain wall memory integrated on silicon[J]. Nature Communications, 2022, 13(1): 4332. DOI: 10.1038/s41467-022-31763-w
|
[5] |
Liu X, Wei C, Sun T, et al. A BaTiO3-based flexible ferroelectric capacitor for non-volatile memories[J]. Journal of Materiomics, 2025, 11(2): 100870. DOI: 10.1016/j.jmat.2024.04.001
|
[6] |
Kim I J, Lee J S. Ferroelectric transistors for memory and neuromorphic device applications[J]. Advanced Materials, 2023, 35(22): 2206864. DOI: 10.1002/adma.202206864
|
[7] |
Fang H, Wang J, Nie F, et al. Giant electroresistance in ferroelectric tunnel junctions via high-throughput designs: toward high-performance neuromorphic computing[J]. ACS Applied Materials Interfaces, 2024, 16(1): 1015-1024. DOI: 10.1021/acsami.3c13171
|
[8] |
Ma Z, Zhang Q, Valanoor N. A perspective on electrode engineering in ultrathin ferroelectric heterostructures for enhanced tunneling electroresistance[J]. Applied Physics Reviews, 2020, 7(4): 041316. DOI: 10.1063/5.0028798
|
[9] |
Zhu Y, Mao H, Zhu Y, et al. CMOS-compatible neuromorphic devices for neuromorphic perception and computing: a review[J]. International Journal of Extreme Manufacturing, 2023, 5(4): 042010. DOI: 10.1088/2631-7990/acef79
|
[10] |
Xu R, Liu S, Saremi S, et al. Kinetic control of tunable multi-state switching in ferroelectric thin films[J]. Nature Communications, 2019, 10(1): 1282. DOI: 10.1038/s41467-019-09207-9
|
[11] |
Ishibashi Y. Phenomenological theory of domain walls[J]. Ferroelectrics, 1989, 98(1): 193-205. DOI: 10.1080/00150198908217582
|
[12] |
Tagantsev A K, Stolichnov I, Setter N, et al. Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films[J]. Physical Review B, 2002, 66(21): 214109. DOI: 10.1103/PhysRevB.66.214109
|
[13] |
Zhukov S, Fedosov S, Glaum J, et al. Effect of bipolar electric fatigue on polarization switching in lead-zirconate-titanate ceramics[J]. Journal of Applied Physics, 2010, 108(1): 014105. DOI: 10.1063/1.3452326
|
[14] |
Song G, Zhang Y, Li S, et al. Dielectric relaxation behavior of BTO/LSMO heterojunction[J]. Nanomaterials, 2021, 11(5): 1109. DOI: 10.3390/nano11051109
|
[15] |
Kumar D, Jin T, Sbiaa R, et al. Domain wall memory: physics, materials, and devices[J]. Physics Reports, 2022, 958: 1-35. DOI: 10.1016/j.physrep.2022.02.001
|
[16] |
易潇源, 朱敏敏. 基于柔性衬底PDMS的钛酸钡电光调制器[J]. 功能材料与器件学报, 2024, 30(05): 267-273.
|
[17] |
Song Y, Wang J, Huang H. Dielectric behavior of point defects on ferroelectric films for different substrate strains by phase–field simulations[J]. Journal of the American Ceramic Society, 2024, 108(4): 20339.
|
[18] |
Zhang Y, Li J, Fang D. Oxygen-vacancy-induced memory effect and large recoverable strain in a barium titanate single crystal[J]. Physical Review B, 2010, 82(6): 064103.
|
[19] |
Sheng G, Hu J M, Zhang J X, et al. Phase-field simulations of thickness-dependent domain stability in PbTiO3 thin films[J]. Acta Materialia, 2012, 60(8): 3296-3301. DOI: 10.1016/j.actamat.2012.03.003
|
[20] |
Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(15): 2483-2498.
|
[21] |
Tsui F, Smoak M C, Nath T K, et al. Strain-dependent magnetic phase diagram of epitaxial La0.67Sr0.33MnO3 thin films[J]. Applied Physics Letters, 2000, 76(17): 2421-2423. DOI: 10.1063/1.126363
|
[22] |
Yuzyuk Y I, Sakhovoy R A, Maslova O A, et al. Phase transitions in BaTiO3 thin films and BaTiO3/BaZrO3 superlattices[J]. Journal of Applied Physics, 2014, 116(18): 184102. DOI: 10.1063/1.4901207
|
[23] |
Zhukov S, Acosta M, Genenko Y A, et al. Polarization dynamics variation across the temperature- and composition-driven phase transitions in the lead-free Ba(Zr0.2Ti0.8)O3−x(Ba0.7Ca0.3)TiO3 ferroelectrics[J]. Journal of Applied Physics, 2015, 118(13): 134104. DOI: 10.1063/1.4932641
|
[24] |
Wang C, Guo L, Hu J, et al. Inhomogeneity-facilitated application of ferroelectric barium titanate thin films in artificial neuromorphic system[J]. Applied Physics Letters, 2024, 125(19): 192905. DOI: 10.1063/5.0238783
|
[1] | ZHU Bing-da, GUO Li-jun, ZHU Wei, GENG Wei-chen, SUN En-hao. Design and simulation of non-volatile optical switch based on phase change material germanium antimony tellurium[J]. Journal of Functional Materials and Devices, 2024, 30(6): 318-322. DOI: 10.20027/j.gncq.2024.0045 |
[2] | ZHANG Jun, ZHENG Li, SHEN Lingyan, ZHOU Xuetong, SU Hang, CHENG Xinhong. Design of Field Limiting Ring-Field Plate Composite Terminal Structure for Vertical GaN-SBD[J]. Journal of Functional Materials and Devices, 2024, 30(5): 233-238. DOI: 10.20027/j.gncq.2024.0038 |
[3] | QIU Peng, ZHU Minmin, HU Wei, ZHANG Haizhong. Field-free switching of spin-orbit torque in BiSb/wedge ferromagnetic structure[J]. Journal of Functional Materials and Devices, 2024, 30(4): 197-205. DOI: 10.20027/j.gncq.2024.0025 |
[4] | ZHOU Cong-quan, QIN Rui-dong, LI Xin. Research progress of nuero-inspired computing using non-volatile memory[J]. Journal of Functional Materials and Devices, 2021, 27(6): 505-513. |
[5] | GAO Shi-fan, ZHAO Yi. Researchon Material and Device System for Non-Volatile In-Memory Computing[J]. Journal of Functional Materials and Devices, 2021, 27(6): 487-493. |
[6] | ZHANG Guoyan, CHEN Zuoyan, LIU Gang, AN Xingcai. Experimental study on the radiation field of photocatalytic reaction of glass beads[J]. Journal of Functional Materials and Devices, 2020, 26(3): 231-236. |
[7] | LIU Zhihao, HE Xiang, SHEN Gengzhe, WANG Fengming, YANG Weijia, HE Xin. Strategies to Improve Performances of Flexible Stress Sensors Based on Silver Nanowire Networks[J]. Journal of Functional Materials and Devices, 2020, 26(3): 197-208. |
[8] | FAN Shibo, PENG Jian, WANG Tong, LIU Qingchun. Effect of homogenizing annealing on microstructure of ZM21 magnesium alloy[J]. Journal of Functional Materials and Devices, 2020, 26(2): 137-141. |
[9] | DING Ang, HAO Jie, WU Min, HUANG Jinghui, ZHANG Yansong, HUANG Hui. Simulation of Oblique Spray Technology for Amorphous Soft Magnetic Alloy Strip[J]. Journal of Functional Materials and Devices, 2020, 26(1): 41-46. |
[10] | YUAN Hualu, PEI Yunzhi, JIN Pengfei. Research of Condition Monitoring of Transmission Lines in Non-Ice Coating Period Based on Optical Fiber Sensing[J]. Journal of Functional Materials and Devices, 2020, 26(1): 31-34. |